Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 10: 1969, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507503

RESUMO

Previous research suggests the existence of an expert anticipatory advantage, whereby skilled sportspeople are able to predict an upcoming action by utilizing cues contained in their opponent's body kinematics. This ability is often inferred from "occlusion" experiments: information is systematically removed from first-person videos of an opponent, for example, by stopping a tennis video at the point of racket-ball contact, yet performance, such as discrimination of shot direction, remains above chance. In this study, we assessed the expert anticipatory advantage for tennis ground strokes via a modified approach, known as "bubbles," in which information is randomly removed from videos in each trial. The bubbles profile is then weighted by trial outcome (i.e., a correct vs. incorrect discrimination) and combined across trials into a classification array, revealing the potential cues informing the decision. In two experiments (both with N = 34 skilled tennis players) we utilized either temporal or spatial bubbles, applying them to videos running from 0.8 to 0 s before the point of racket-ball contact (cf. Jalali et al., 2018). Results from the spatial experiment were somewhat suggestive of accrual from the torso region of the body, but were not compelling. Results from the temporal experiment, on the other hand, were clear: information was accrued mainly during the period immediately prior to racket-ball contact. This result is broadly consistent with prior work using nonstochastic approaches to video manipulation, and cannot be an artifact of temporal smear from information accrued after racket-ball contact, because no such information was present.

2.
Front Psychol ; 9: 2229, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524338

RESUMO

Humans can rapidly discriminate complex scenarios as they unfold in real time, for example during law enforcement or, more prosaically, driving and sport. Such decision-making improves with experience, as new sources of information are exploited. For example, sports experts are able to predict the outcome of their opponent's next action (e.g., a tennis stroke) based on kinematic cues "read" from preparatory body movements. Here, we explore the use of psychophysical classification-image techniques to reveal how participants interpret complex scenarios. We used sport as a test case, filming tennis players serving and hitting ground strokes, each with two possible directions. These videos were presented to novices and club-level amateurs, running from 0.8 s before to 0.2 s after racquet-ball contact. During practice, participants anticipated shot direction under a time limit targeting 90% accuracy. Participants then viewed videos through Gaussian windows ("bubbles") placed at random in the temporal, spatial or spatiotemporal domains. Comparing bubbles from correct and incorrect trials revealed how information from different regions contributed toward a correct response. Temporally, only later frames of the videos supported accurate responding (from ~0.05 s before ball contact to 0.1 s afterwards). Spatially, information was accrued from the ball's trajectory and from the opponent's head. Spatiotemporal bubbles again highlighted ball trajectory information, but seemed susceptible to an attentional cuing artifact, which may caution against their wider use. Overall, bubbles proved effective in revealing regions of information accrual, and could thus be applied to help understand choice behavior in a range of ecologically valid situations.

3.
Front Psychol ; 7: 416, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047434

RESUMO

The most popular tasks with which to investigate the perception of subjective synchrony are the temporal order judgment (TOJ) and the simultaneity judgment (SJ). Here, we discuss a complementary approach-a dual-presentation (2x) SJ task-and focus on appropriate analysis methods for a theoretically desirable "roving" design. Two stimulus pairs are presented on each trial and the observer must select the most synchronous. To demonstrate this approach, in Experiment 1 we tested the 2xSJ task alongside TOJ, SJ, and simple reaction-time (RT) tasks using audiovisual stimuli. We interpret responses from each task using detection-theoretic models, which assume variable arrival times for sensory signals at critical brain structures for timing perception. All tasks provide similar estimates of the point of subjective simultaneity (PSS) on average, and PSS estimates from some tasks were correlated on an individual basis. The 2xSJ task produced lower and more stable estimates of model-based (and thus comparable) sensory/decision noise than the TOJ. In Experiment 2 we obtained similar results using RT, TOJ, ternary, and 2xSJ tasks for all combinations of auditory, visual, and tactile stimuli. In Experiment 3 we investigated attentional prior entry, using both TOJs and 2xSJs. We found that estimates of prior-entry magnitude correlated across these tasks. Overall, our study establishes the practicality of the roving dual-presentation SJ task, but also illustrates the additional complexity of the procedure. We consider ways in which this task might complement more traditional procedures, particularly when it is important to estimate both PSS and sensory/decisional noise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...